

STEADYWEB[™] 5

RS232 / RS485 Serial Interface OPTION INSERT

DOC 801-2385

This document to be used in conjunction with the SW5 CONTROLLER INSTRUCTION MANUAL

217 Pickering Road

Rochester, NH 03867-4630 U.S.A.

For assistance, please call:

- TECHNICAL SERVICE Installations, Start-Up, Troubleshooting, Repairs, Field Service, Returns: call 603-332-6150 and ask for Technical Support or email to us at <u>techsupport@dfe.com</u>
- CUSTOMER SERVICE Replacement Parts, Individual Products, Questions about Orders, Manuals: call 603-332-6150 and ask for Customer Service or email to us at <u>customerservice@dfe.com</u>
 - SALES Product Information, Systems Application Questions, and placing orders for standard products and special systems. Please call 603-332-6150 and ask for Sales or email to us at <u>sales@dfe.com</u>

Telephone: (603) 332-6150 Fax: (603) 332-3758 E-mail: info@dfe.com Internet: www.dfe.com

©2013 Dover Flexo Electronics, Inc. All rights reserved. Dover Flexo Electronics has made reasonable effort to ensure accuracy of this document. However NO WARRANTY, whether expressed or implied, is given regarding the completeness or correctness of information in this document. Dover Flexo Electronics shall not be liable for damages of any kind arising from the use or misuse of this document. Dover Flexo Electronics reserves the right to make changes, additions, and deletions to this document without notice and without obligation.

SECTION

N		PAGE
1.	General Description	1
2.	Electrical Connections	
	2a. RS232 Connections	1
	2b. RS485 Connections	2
3.	Host Computer Interface	4
4.	Modbus RTU Protocol	
	4a. Modbus Protocol	
	4b. Configuration Settings	11
	4c. Store Setup Names	
	4d. Run Time Data	
	4e. Standard Data	
	4f. Remote Push Buttons	24
	4g Modbus RTU Command Format	24
	Index	31

LIST OF ILLUSTRATIONS

FIGUREPAGE1. RS232 Electrical Connection and Jumper Positions22. RS485 2-Wire Electrical Connection and Jumper Positions23. RS485 4-Wire Electrical Connection and Jumper Positions34. RS485 2-Wire and 4- Wire Daisy Chain Setup35. RS485 2-Wire and 4-Wire Termination4

1. GENERAL DESCRIPTION

The RS232 and RS485 option cards allow communication to the SteadyWeb5 tension controller with a remote PLC (programmable logic controller), HMI (human machine interface), computer, or similar device. The communication is done using the Modbus RTU protocol or its Host Computer Interface (HCI). This includes the capability to read tension and related process data, change the setpoints and control mode, adjust settings and save and recall Setups.

Only one communication option card (RS232, RS485, or Ethernet*) can be populated at a time. When using the RS232 option card, the controller acts as a slave which can communicate with a single master using the RS232 standard. When using the RS485 option card, the controller acts as a slave which can be connected to a network with multiple other slaves and a single master using the RS485 standard. This allows multiple SW5s to be connected to a single network or to share a network with other serial communication devices. The Modbus protocol allows for the unique addressing of up to 247 devices on a single network while the HCI protocol supports up to 35 unique devices-although many RS485 implementations limit the number of connected devices to 32.

* See the SteadyWeb5 Ethernet Option Manual Insert (DOC 801-2384) for more information about the Ethernet option.

2. ELECTRICAL CONNECTIONS

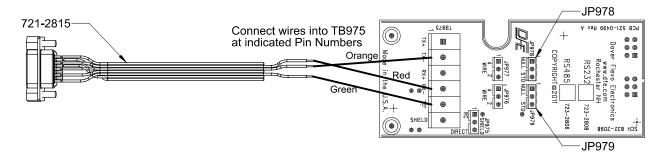
Both the RS232 and RS485 option cards feature a 6 pin terminal block to allow direct connection to the board with flying leads from a communication cable. Enclosed versions of the SW5 controller are also available with a DB9 connector option. This allows connection with a standard 9-pin D-sub connector. The DB9 option includes a gender changer to allow connection to either a male or female terminated cable.

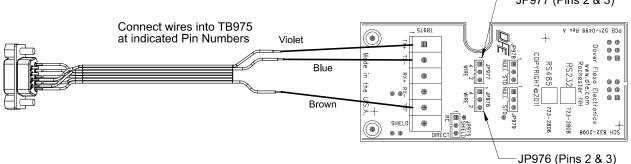
The DB9 connector option includes flying leads that tie the enclosure mounted DB9 connector to the communication option card terminal block. This allows for an adaptable connector pinout configuration, which may be desirable for RS485 implementations, as it is common for different PLC vendors to use unique Modbus DB9 pinouts. If the DB9 option is ordered with the RS485 option card, the connector pinout will be wired to the option card in accordance to the Modbus specification as described in the connection diagram below, but can be changed if needed to interface with Modbus systems that don't conform to the recommended pinout. The RS232 DB9 pinout is virtually never varied, so there should be no reason to change the factory set pinout when the DB9 option is ordered with the RS232 communication option.

2a. RS232 Connections

The RS232 communication cable should be wired directly to the option card terminal block or to the optional DB9 connector as shown in Figure 1..

In addition to the electrical connections, the STD/NULL jumpers (JP978 and JP979) must be set. When using a standard serial cables these should be left in the STD positions.(Pins 2 & 3) When using a NULL modem cable, the jumpers need to be moved to the NULL positions.(Pins 1 & 2) Both JP978 and JP979 should be set to the same position (STD or NULL).




Figure 1 - RS232 Electrical Connections and Jumper Positions

2b. RS485 Connections

The RS485 Option card can be configured for 4 wire plus ground or 2 wire plus ground operation. 2 wire ground will require 2 twisted pair, and 4 wire will require 3 twisted pair. The twisted pairs should be shielded. Separate ground and shield connections are provided on the terminal block. The maximum cable length is 2000' and the maximum number of devices is 32..

For two wire RS485 communication, the cable should be wired directly to the option card terminal block or the the optional DB9 connector as shown below.

In addition to the electrical connections, the 4 wire / 2 wire jumpers (JP977 and JP976) should be set to the 2 wire positions. Both JP977 and JP976 should be set to the same position (4 wire or 2 wire).

Figure 2 - RS485 2 Wire Electrical Connections and Jumper Positions

For four wire RS485 communication, the cable should be wired directly to the option card terminal block or to the optional DB9 connector as described below.

In addition to the electrical connections, the 4 wire / 2 wire jumpers (JP977 and JP976) should be set to the 4 wire positions. Both JP977 and JP976 should be set to the same position (4 wire or 2 wire).

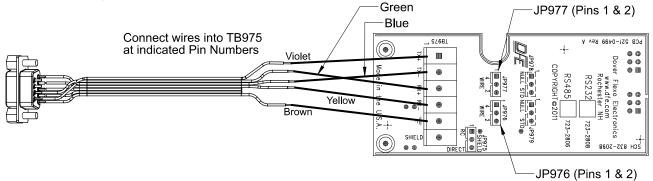


Figure 3 - RS485 4 Wire Electrical Connections and Jumper Positions

2b. RS485 Connections continued...

Depending on cable length, RS485 networks may be terminated with resistors at the two ends of the network. If the SW5 is connected into the middle of an existing network, termination resistors are not required. If it is the only device on the network (other than the master device) or if it is at the end of a network, termination resistors can be installed into the terminal block as shown below. 2 Wire communication only requires one termination resistor. 4 Wire communication requires two resistors. Typical termination resistors are 120 Ohm



Figure 4 - RS485 Four and Two Wire Daisy Chain Set-Up

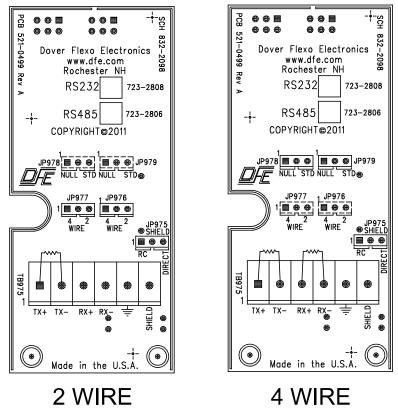


Figure 5 - RS485 2 Wire and 4 Wire Termination

3. HOST COMPUTER INTERFACE

Within the *Communications Menu*, the **Communications Option** setting should be programmed to **HCI**. The HCI communication parameters are <u>not adjustable</u> and are set to the following values,

Baud Rate = 9600 bits/s Parity = None Stop Bits = 1 Data Bits = 8

These parameters should match the communication parameters of the master computer or PLC otherwise errors will occur.

The **HCI Slave Address** setting should be programmed to a value from 1 through 9 or A through Z. For RS485 applications, this address should be unique to any other devices sharing the network. The factory default is "1".

All host commands include a unit address for those applications which have multiple units on a single RS485 serial communications link. In the following command descriptions, "#" indicates the SteadyWeb5's one-byte ASCII address which can be set from 1 through 9 or A through Z. This provides 35 possible addresses for multiple unit installations.

Whenever the SteadyWeb5 receives a command which requires a specific response to that command, it responds with a "%" character common to all responses, a prefix specific to that command, its address, and then the requested information. In this way the host has confirmation that the SteadyWeb5 processed the command correctly and that the data is valid. If the SteadyWeb5 receives a command but does not recognize it, or for any reason cannot process the command the SteadyWeb5 will acknowledge the receipt of these undefined or inappropriate command arguments with the NAK(negative acknowledge) response, "%#?".

The host computer may transmit commands to other devices on the same network as the SteadyWeb5. If the command prefix is not a "\$" character the SteadyWeb5 will ignore it completely and no NAK response will be generated. In similar fashion, a SteadyWeb5 with a given address will ignore a command sent to a SteadyWeb5 with a different address.

In multiple unit installations it may be desirable to broadcast the same command to all SteadyWeb5's. An example of this would be to turn all SteadyWeb5's tension "ON" at the same time, or to simultaneously update all of them with a new setpoint. For this purpose, the address "0" is reserved as a broadcast address. However, to eliminate garbled data from multiple controllers responding with the ACK response, the SteadyWeb5 does not respond when a broadcast command is issued(this is the only circumstance that the SteadyWeb5 does not respond to command when it is processed correctly). Be aware that other manufacturers products may respond in different ways, making this usage have unpredictable results.

The user must constrain command arguments, including numeric ranges, to be valid entries, otherwise unpredictable results may occur.

Note All Steadyweb5's responses are terminated with the ASCII code for "Carriage Return"(0x0D). The user must ensure that all host commands are also terminated with a Carriage Return.

Hos

Command	Description		
\$#a(+4)	Set Auto Setpoint: Host sets automatic setpoint to be equal to the value contained in the following four bytes, where the data format is:		
	"X.XX" when the tension range is <10		
	"XX.X" when the tension range is <100		
	"XXX." when the tension range is <1000		
	"XXXX" when the tension range is <10000		
	SteadyWeb5 Response:		
	%#A Command acknowledged, processed correctly.		
\$#A	Go to Auto Mode: Host instructs the SteadyWeb5 to go to automatic control mode.		
	SteadyWeb5 Response:		
	%#A Command acknowledged, processed correctly.		
\$#C	Inquire Controller Mode: Host inquires the controller mode (Auto/Manual)		
	SteadyWeb5 Response:		
	%#C(+1) Controller mode is contained in the next byte, where ASCII "0" (0x30h) = Manual Mode, and ASCII "1" (0x31h) = Auto Mode		
\$#d(+5)	Inquire Roll Diameter: Host inquires what the present roll diameter is.		
	SteadyWeb5 Response:		
	%#d(+5) Roll diameter value is contained in the following five bytes, where the data format is:		
	" $_ XX$ " when maximum diameter is between 0 and 9.99		
	"_XX.X" when maximum diameter is between 10 and 99.9		
	"XXX.X" when maximum diameter is between 100 and 999.9		
	"XXXX." when maximum diameter is between 1000 and 9999		
\$#F	Turn Tension Off: Host instructs SteadyWeb5 to deactivate output.		
	SteadyWeb5 Response:		
	%#A Command acknowledged, processed correctly.		
\$#G(+5)	Set Gain Coefficient: Host sets gain(proportional of the PID) to be equal to the value contained in the following five bytes, where the data format is "XX.XX"(ex. 09.50 represents 9.50 inches, centimeters, or other units of distance)		

SteadyWeb5 Response:

%#A Command acknowledged, processed correctly.

Command Description

\$#I Status Inquiry: Host inquires what the present controller status is.

SteadyWeb5 Response:

%#I(+2) Controller status is contained in the first 10	bits of the 16 bit word(2 bytes)
0000 00XX XXXX XXXn: n=0: Estop Inactive	n=1 Estop Active
0000 00XX XXXX XXnX: n=0: TLS LOW Inactive	n=1 TLS LOW Active
0000 00XX XXXX XnXX: n=0: TLS HIGH Inactive	n=1 TLS HIGH Active
0000 00XX XXXX nXXX: n=0: Tension Off	n=1 Tension On
0000 00XX XXXn XXXX: n=0: Manual	n=1 Auto
0000 00XX XXnX XXXX: n=0: Soft Start Inactive	n=1 Soft Start Active
0000 00XX XnXX XXXX: n=0: Hold Inactive	n=1 Hold Active
0000 00XX nXXX XXXX: n=0: Ratio Inactive	n=1 Ratio Active
0000 00Xn XXXX XXXX: n=0: Lockout Inactive	n=1 Lockout Act
0000 00nX XXXX XXXX: n=0: Taper Inactive	n=1 Taper Active

\$#K(+2)(+14) Store Setup Name: The controller is capable of storing up to 31 Setups, in addition to the ACTIVE setup. Setups are stored in memory slots. Slot 1 always holds the ACTIVE Setup. The ACTIVE setup may be copied and saved into slots 2-32 as selected by (+2). Setups 2-32 may have unique names up to 14 characters long as entered in (+14). Only the following characters can be used in a name:

_0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ

Saving a setup name will copy the ACTIVE configuration into the selected slot.(Ex. \$1K05FINAL_SETUP will copy the ACTIVE configuration into slot 5 and name it "FINAL_SETUP")

SteadyWeb5 Response:

%#A Command acknowledged, processed correctly.

Note: Due to the time required for the storage operation, it may take up to 2 seconds for the SteadyWeb5 to deliver the ACK response. If the SteadyWeb5 returns the NAK response %#?, this is because the slot number is out of range, or the name contains invalid characters

\$#m(+3) Set Manual Setpoint: Host sets manual setpoint to be equal to the value contained in the following three bytes, where the data format is "XXX" (Ex. 075 represents 75% output)

SteadyWeb5 Response:

%#A Command acknowledged, processed correctly.

Command Description

\$#M	Go to Manual Mode: Host instructs SteadyWeb5 to go to Manual Mode.
	SteadyWeb5 Response:
	%#A Command acknowledged, processed correctly.
\$#N	Turn Tension On: Host instructs SteadyWeb5 to activate output.
	SteadyWeb5 Response:
	%#A Command acknowledged, processed correctly.
\$#O	Inquire Tension Mode: Host inquires tension mode(Tension ON/OFF)
	SteadyWeb5 Response:
	%#O(+1) Tension mode is contained in the next byte, where ASCII "0" $(0x30h) =$ Tension On, and ASCII "1" $(0x31h) =$ Tension Off.
\$#P(+2)	Retrieve Stored Setup: Activate one of the stored setups(2 through 32) and make it the active setup(Ex. \$1P05 will take the setup in slot number 5 and make it the active setup)
	SteadyWeb5 Response:
	%#A Command acknowledged, processed correctly

Note: Due to the time required for the storage operation, it may take up to 2 seconds for the SteadyWeb5 to deliver the ACK response. If the SteadyWeb5 returns the NAK response %#?, this is because a stored setup doesn't exist or the slot number is out of range.

\$#r(+5) Set Tension Trim: Host sets tension trim setting to be equal to the value contained in the following five bytes, where the data format is "XXX.X" (Ex. 075.5 represents a value of 75.5%)

SteadyWeb5 Response:

%#A Command acknowledged, processed correctly.

\$#R(+6) Set Response: Host sets response(derivative of the PID) to be equal to the value contained in the following three bytes, where the data format is "XX.XXX"(Ex. 09.532) represents a value of 9.532)

SteadyWeb5 Response:

%#A Command acknowledged, processed correctly.

Command Description

\$#s **Inquire Line Speed:** Host inquires what the present line speed is.

SteadyWeb5 Response:

%#s(+5) Line speed value is contained in the following five bytes, where the data format is:

X.X	when maximum line speed is <10
_XX.X	when maximum line speed is <100
XXX.X	when maximum line speed is <1000
XXXX.	when maximum line speed is <10000
XXXXX	when maximum line speed is >10000
Set Stahil	ity. Host sets stability (integral of the PII

\$#S(+6) Set Stability: Host sets stability(integral of the PID) to be equal to the value contained in the following six bytes, where the data format is "XX.XXX"(Ex. 09.532 represents a value of 9.532)

SteadyWeb5 Response:

%#A Command acknowledged, processed correctly.

\$#t Inquire Tension Value: Host inquires what the present tension value is.

SteadyWeb5 Response:

%#t(+5) Tension value is contained in the following five bytes where the data format is,

- "_X.XX" when tension range is between 1 and 9.99
- "_XX.X" when tension range is between 10.0 and 99.9
- "_ XXX." when tension range is between 100 and 999.9
- "_XXXX" when tension range is between 1000 and 9999

Note: The left most space is reserved for the negative sign if tension is negative.

\$#T **Read Tension Trim:** Host inquires the current tension trim setting.

SteadyWeb5 Response:

%#T(+5) Tension trim value is contained in the following 5 bytes where the data format is "XXX.X" (Ex. _ 9.5 represents 9.5%)

Command Description

\$#V Inquire Manual Setpoint: Host inquires what the present manual setpoint is.

SteadyWeb5 Response:

%#V(+3) Manual setpoint value is contained in the following 3 bytes where the data format is "XXX" (Ex. _15 represents 15%)

\$#W Read Auto Setpoint: Host inquires the current auto setpoint.

SteadyWeb5 Response:

%#W(+4) Automatic setpoint value is contained in the following 4 bytes where the data format is,

"X.XX" when tension range is between 1 and 9.99

"XX.X" when tension range is between 10 and 99.9

"XXX." when tension range is between 100 and 999

"XXXX" when tension range is between 1000 and 9999

\$#X **Read Gain:** Host inquires the current PID gain setting from the controller.

SteadyWeb5 Response:

%#X(+5) Gain value is contained in the following 5 bytes where the data format is "XX.XX" (Ex. _ 8.25 represents 8.25)

\$#Y **Read Stability:** Host inquires the current PID stability setting from the controller.

SteadyWeb5 Response:

%#Y(+6) Stability value is contained in the following 6 bytes where the data format is "XX.XXX" (Ex. _ 8.123 represents 8.123)

\$#Z **Read Response:** Host inquires the current PID response setting from the controller.

SteadyWeb5 Response:

%#Z(+6) Response value is contained in the following 6 bytes where the data format is "XX.XXX" (Ex. _ 8.123 represents 8.123

%#? SteadyWeb5 Negative Acknowledge(NAK) response:

Command interpreted and acknowledged, but not processed. Typically this is because the argument is out of range, or because the formatting is incorrect.

4. MODBUS RTU PROTOCOL

The communication option cards are configured through the SW5's user interface. The settings are accessible through the display's Menu mode in the *Setup Menu > Communications Menu* (refer to the SW5 manual for informations on how to access and navigate the controller's menu system).

Within the *Communications Menu*, the **Communications Option** setting should be programmed to **Modbus**.

The **Modbus Slave Address** setting should be programmed to a value from 1 to 247. For RS485 applications, this address should be unique to any other devices sharing the network.

The **Modbus Baud Rate** setting should be set to the communication rate used by the master. Options are **4800**, **9600**, **14400**, and **19200** baud.

The Modbus Parity setting should be set to Even or Odd to match the parity used by the master.

The **Modbus Stop Bits** setting should be set to 1 or 2 to match the number of stop bits used by the master.

Communication packets always contain 8 data bits, and this is not adjustable.

4a. Modbus Protocol

Communication for both the RS232 and RS485 option cards use the Modbus RTU protocol.

The Modbus Protocol Specification is described in the document: MODBUS APPLICATION PROTOCOL SPECIFICATION V1.1b This may be downloaded from: http://www.Modbus-IDA.org

Modbus is a Master-Slaves protocol. Only one master is connected to the bus, and up to 247 slaves may be connected to the same serial bus. Modbus communications is always initiated by the Master node. Serial transmission uses the RTU mode.

A Modbus command consists of the following fields:

Where the Address is the slave device address and the CRC (cyclic redundancy check) is used to identify any errors or corruption in the data packet.

The Data is determined by the Function Code. The following Modbus Function Codes are supported:

Function Code	Function	
00	Broadcast Message	
03	Read Holding Registers	
04	Read Input Registers	
05	Write Single Coil	
06	Write Single Register	
16	Write Multiple Registers	

4b. Configuration Settings

The remaining settings are used to configure the SteadyWeb5. Configuration settings are read using the Read Holding Registers command (03), and are written using the Write Single Register Command (06). The address and range of each configuration setting is given below. Settings that have been left blank should not be accessed.

Setting	Range	Read/Write
Control Software Vers	$ion 0 = 0.00 \rightarrow 1000 = 10.00$	Read Only
	Example:	
	A value of 150 represents Version 1.50	
Tension Zone	$0 \rightarrow 2$, where $0 \rightarrow 2$ represents:	Read/Write
	0 = Unwind	
	1 = Intermediate	
	2 = Rewind	
Control Feedback Mod	le $0 \rightarrow 2$, where $0 \rightarrow 2$ represents:	Read/Write
	0 = Closed Loop	
	1 = Line Follow Tension Trim	
	2 = Diameter Compensated Line Follow	
	Tension Trim	
Tension Source	$0 \rightarrow 2$, where $0 \rightarrow 2$ represents:	Read/Write
	0 = Transducer	
	1 = RTA 1	
	2 = RTA 2	
Excitation Voltage	$0 \rightarrow 2$, where $0 \rightarrow 2$ represents:	Read/Write
	0 = Auto	
	1 = 5V Set	
	2 = 10V Set	
Tension Trim	$0 = 0.00\% \rightarrow 10000 = 100.00\%$	Read/Write
	Example:	
	A value of 5000 represents 50.00% trim	
	Control Software Vers Tension Zone Control Feedback Mod Tension Source Excitation Voltage	Control Software Version $0 = 0.00 \rightarrow 1000 = 10.00$ Example:A value of 150 represents Version 1.50Tension Zone $0 \rightarrow 2$, where $0 \rightarrow 2$ represents: $0 = Unwind$ $1 = Intermediate$ $2 = Rewind$ $0 \rightarrow 2$, where $0 \rightarrow 2$ represents:Control Feedback Mode $0 \rightarrow 2$, where $0 \rightarrow 2$ represents: $0 = Closed Loop$ $1 = Line Follow Tension Trim$ $2 = Diameter Compensated Line Follow Tension Trim2 = Diameter Compensated Line Follow Tension Trim2 = RTA 12 = RTA 12 = RTA 2Excitation Voltage0 \rightarrow 2, where 0 \rightarrow 2 represents:0 = Auto1 = 5V Set2 = 10V SetTension TrimControl Feedback$

Register	Setting	Range	
3	Tension Off by ESTOP	$0 \rightarrow 1$, where $0 \rightarrow 1$ represents:	Read/Write
		0 = Yes	
		1 = No	
)	Power On Control Mode	$0 \rightarrow 1$, where $0 \rightarrow 1$ represents:	Read/Write
		0 = Manual	
		1 = Auto	
0	Power On Tension Mode	$0 \rightarrow 1$, where $0 \rightarrow 1$ represents:	Read/Write
		0 = Off	
1		1 = On	D 1/37/14
1	Core Diameter	$10 = 1.0 \rightarrow 10000 = 1000.0$	Read/Write
		Example:	
		A value of 5000 represents a diameter of 500.0	
		The diameter units (in. or cm) is specified by	
12	Max Full Roll Diameter	the Diameter Units setting. $10 = 1.0 \rightarrow 10000 = 1000.0$	Read/Write
2	Max Full Koll Dialiteter		Keau/ Wille
		Example:	
		A value of 5000 represents a maximum diameter value of 500.0	
		The diameter units (in. or cm) is specified by	
		the Diameter Units setting.	
3	Diameter Input Type	$0 \rightarrow 1$, where $0 \rightarrow 1$ represents:	Read/Write
		0 = Direct	
		1 = Tachometer Ratio Calculate	
4	Diameter Filter Time	$0 \rightarrow 8$, where $0 \rightarrow 8$ represents:	Read/Write
		0 = 0.00 sec	
		1 = 0.10 sec $5 = 2.00 sec$	
		2 = 0.25 sec $6 = 3.00 sec$	
		3 = 0.50 sec $7 = 4.00 sec$	
		4 = 1.00 sec $8 = 5.00 sec$	
5	Diameter Units	$0 \rightarrow 1$, where $0 \rightarrow 1$ represents:	Read/Write
-		0 = in.	
		1 = cm	
9	Max Line Speed	$0 \rightarrow 10000$	Read/Write
		The line speed units (ft/min, m/min, etc.) is	
		specified by the Line Speed Units setting.	

Register	Setting	Range	Read/Write
20	Line Speed Units	$0 \rightarrow 7$, where $0 \rightarrow 7$ represents:	Read/Write
		0 = in/sec	
		1 = in/min	
		2 = ft/sec	
		3 = ft/min	
		4 = cm/sec	
		5 = cm/min	
		6 = m/min	
		7 = Y/min	
21	Speed Soft Start	$0 \rightarrow 1$, where $0 \rightarrow 1$ represents:	Read/Write
		0 = Off	
		1 = On	
22	Tension Soft Start	$0 \rightarrow 1$, where $0 \rightarrow 1$ represents:	Read/Write
		$0 = \mathrm{Off}$	
		1 = On	
23	Switched Soft Start	$0 \rightarrow 1$, where $0 \rightarrow 1$ represents:	Read/Write
		$0 = \mathrm{Off}$	
		1 = On	
24	Soft Start Speed Trip	$0 = 0.00\% \rightarrow 10000 = 100.00\%$	Read/Write
	Point	Example:	
		A value of 5000 represents a trim point of	
		50.00% the max line speed, which is specified	
	~ ~ ~ ~ ~ ~	by the Max Line Speed setting.	- 1/777.1
25	Soft Start Delay ms	$1000 = 1.000 \text{ sec} \rightarrow 5000 = 5.000 \text{ sec}$	Read/Write
		Example:	
		A value of 1500 represents a 1.500 second Soft	
26	Coft Stort Ordnerd Lorol	Start delay. $0 = 0.00\% \rightarrow 10000 = 100.00\%$	Read/Write
20	Soft Start Output Level		Reau/ write
		Example:	
		A value of 5000 represents a Soft Start output level of 50% max output, or 5V.	
27	Ratio Multiplier	$1 = 0.1x \rightarrow 100 = 10.0x$	Read/Write
_ /	P	Example:	
		A value of 50 represents a Ratio Multiplier of	
		5.0x.	
28	Ratio Delay ms	$1000 = 1.000 \text{ sec} \rightarrow 15000 = 15.00 \text{ sec}$	Read/Write
	-	Example:	
		A value of 5000 represents a Ratio Delay of	
		5.000 seconds.	
29	Ratio Target	$0 \rightarrow 2$, where $0 \rightarrow 2$ represents:	Read/Write
		0 = Output	
		1 = Setpoint	
		2 = Line Speed	

Register	Setting	Range	Read/Write
30	TLS Low Mode	$0 \rightarrow 2$, where $0 \rightarrow 2$ represents:	Read/Write
		0 = Off	
		1 = Momentary	
		2 = Latched	
31	TLS High Mode	$0 \rightarrow 2$, where $0 \rightarrow 2$ represents:	Read/Write
		0 = Off	
		1 = Momentary	
		2 = Latched	
32	TLS Delay	$0 = 0.000 \text{ sec} \rightarrow 10000 = 10.000 \text{ sec}$	Read/Write
		Example:	
		A value of 5000 represents a TLS Delay of	
		5.000 seconds.	
33	Tension Off by TLS Low	$0 \rightarrow 1$, where $0 \rightarrow 1$ represents:	Read/Write
		0 = Yes	
		1 = No	
34	Tension Off by TLS High	$0 \rightarrow 1$, where $0 \rightarrow 1$ represents:	Read/Write
		0 = Yes	
		1 = No	
35	Manual Setpoint Source	$0 \rightarrow 2$, where $0 \rightarrow 2$ represents:	Read/Write
		0 = Front Panel	
		1 = Potentiometer	
		2 = 0 - 10V Input	
36	Auto Setpoint Source	$0 \rightarrow 2$, where $0 \rightarrow 2$ represents:	Read/Write
		0 = Front Panel	
		1 = Potentiometer	
		2 = 0 - 10V Input	
37	External Tension Toggle	$0 \rightarrow 1$, where $0 \rightarrow 1$ represents:	Read/Write
		0 = Off	
		1 = On	
38	External Auto Manual	$0 \rightarrow 1$, where $0 \rightarrow 1$ represents:	Read/Write
	Toggle	0 = Off	
		1 = On	
40	Positive Output Limit	$0 = 0.00\% \to 10000 = 100.00\%$	Read/Write
		Example:	
		A value of 5000 represents a maximum output	
		value of 50.00% of 10V, which is 5V.	
41	Negative Output Limit	$0 = 0.00\% \rightarrow 10000 = 100.00\%$	Read/Write
		Example:	
		A value of 5000 represents a minimum output value of 50.00% of -10V, which is -5V.	

Register	Setting	Range	Read/Write
42	Control Output	$0 \rightarrow 1$, where $0 \rightarrow 1$ represents:	Read/Write
		0 = Standard	
		1 = Reverse	
43	Relay Function	$0 \rightarrow 3$, where $0 \rightarrow 3$ represents:	Read/Write
		0 = None	
		1 = Tension On	
		2 = TLS On	
		3 = TLS Off	
48	(P) Gain	$1 = 0.01 \rightarrow 2500 = 25.00$	Read/Write
		Example:	
		A value of 150 represents an error gain of	
		1.50x.	
49	(I) Stability	$10 = 0.010 \text{ sec} \rightarrow 30000 = 30.000 \text{ sec}$	Read/Write
		Example:	
		A value of 2500 represents an Integral time	
		constant of 2.500 seconds.	
50	(D) Response	$0 = 0.000 \text{ sec} \rightarrow 30000 = 30.000 \text{ sec}$	Read/Write
		Example:	
		A value of 500 represents a Derivative time	
- 1		constant of 0.500 seconds.	
51	Acceleration Percentage	$0 = 0.00\% \to 10000 = 100.00\%$	Read/Write
		Example:	
		A value of 5000 represents an Acceleration	
52	Acceleration Limit	Percentage of 50.00% . $0 = 0.00\% \rightarrow 10000 = 100.00\%$	Read/Write
)2	Acceleration Limit		Keau/ wille
		Example:	
		A value of 5000 represents an Acceleration Limit of 50.00%.	
53	Acceleration P Multiplier	$1 - 0.1 \rightarrow 100 - 10.0$	Read/Write
))	Acceleration 1 Multiplier	Example:	iceau/ wine
		A value of 50 represents an Acceleration	
		Proportional Multiplier of 5.0x.	
54	Accel I Multiplier	$1 = 0.1 \rightarrow 100 = 10.0$	Read/Write
		Example:	
		A value of 50 represents an Acceleration	
		Integral Multiplier of 5.0x.	
55	Accel D Multiplier	$1 = 0.1 \rightarrow 100 = 10.0$	Read/Write
		Example:	
		A value of 50 represents an Acceleration	
		Derivative Multiplier of 5.0x.	

Register	Setting	Range	Read/Write
Diameter Comp. Enable 0 –		$0 \rightarrow 1$, where $0 \rightarrow 1$ represents:	Read/Write
		0 = Off	
		1 = On	
57	Full Roll (P) Gain	$1 = 0.01 \rightarrow 2500 = 25.00$	Read/Write
		Example:	
		A value of 150 represents a Full Roll error gain	ı
		of 1.50x.	
58	Full Roll (I) Stability	$10 = 0.010 \text{ sec} \rightarrow 30000 = 30.000 \text{ sec}$	Read/Write
		Example:	
		A value of 2500 represents a Full Roll Integral	
		time constant of 2.500 seconds.	
59	Full Roll (D) Response	$0 = 0.000 \text{ sec} \rightarrow 30000 = 30.000 \text{ sec}$	Read/Write
		Example:	
		A value of 500 represents a Full Roll	
		Derivative time constant of 0.500 seconds.	D 1/111
50	Tension Filter Time	$0 \rightarrow 8$, where $0 \rightarrow 8$ represents:	Read/Write
		0 = 0.000 sec	
		1 = 0.008 sec	
		2 = 0.016 sec	
		3 = 0.032 sec	
		4 = 0.064 sec	
		5 = 0.125 sec	
		6 = 0.250 sec	
		7 = 0.500 sec	
		8 = 1.000 sec	
52	Display Mode	$0 \rightarrow 2$, where $0 \rightarrow 2$ represents:	Read/Write
		0 = Bar Graph	
		1 = Analog Meter	
		2 = Line Graph	
53	Tension Update Time	$0 \rightarrow 4$, where $0 \rightarrow 4$ represents:	Read/Write
		0 = 0.2 sec	
		1 = 0.5 sec	
		2 = 1.0 sec	
		3 = 2.0 sec	
		4 = 5.0 sec	
55	Line Speed Display	$0 \rightarrow 2$, where $0 \rightarrow 2$ represents:	Read/Write
		0 = Auto	
		1 = On	
		2 = Off	
56	Diameter Display	$0 \rightarrow 2$, where $0 \rightarrow 2$ represents:	Read/Write
	- · ·	0 = Auto	
		1 = On $2 = Off$	

Register	Setting	Range	Read/Write
67	Manual Setpoint	$0 = 0.00\% \rightarrow 1000 \ 0 = 100.00\%$	Read/Write
		Example:	
		A value of 5000 represents a maximum output	
<u>(</u>)		value of 50.00% of 10V, which is 5V.	
68	Taper Enable	$0 \rightarrow 1$, where $0 \rightarrow 1$ represents:	Read/Write
		0 = Off	
60	Ton or Donoonto as	1 = On 0 = 0.00% \rightarrow 10000 = 100.00%	Read/Write
69	Taper Percentage		Read/write
		Example:	
		A value of 5000 represents a Taper Percentage	
71	Tension Units	of 50.00%. $0 \rightarrow 4$, where $0 \rightarrow 4$ represents:	Read/Write
/1	rension emits	0 = 1b, $1 = 0z$.	iteau/ wine
		2 = g $3 = kg$	
		$\begin{array}{l} 2 - g 3 - \kappa g \\ 4 = N \end{array}$	
72	Advanced Menu Mode	$0 \rightarrow 1$, where $0 \rightarrow 1$ represents:	Read/Write
,		0 = Off	iteau, wiite
		1 = On	
74	Tension Range	$0 \rightarrow 27$, where $0 \rightarrow 27$ represents:	Read/Write
		0 = 1 $14 = 200$	
		1 = 3 $15 = 250$	
		2 = 5 $16 = 300$	
		3 = 7 $17 = 400$	
		4 = 10 $18 = 500$	
		5 = 15 $19 = 750$	
		6 = 20 $20 = 1000$	
		7 = 25 $21 = 1250$	
		8 = 35 $22 = 1500$	
		9 = 50 $23 = 2000$	
		10 = 75 $24 = 2500$	
		10 = 75 $21 = 250011 = 100$ $25 = 3000$	
		12 = 125 $26 = 4000$	
		12 = 123 $20 = 400013 = 150$ $27 = 5000$	
78	Tension Trip Point	$0 = 0.00\% \rightarrow 10000 = 100.00\%$	Read/Write
		Example:	
		A value of 5000 represents a Tension Trip	
		Point percentage of 50.00% the full range	
		tension.	
79	TLS Low Setpoint	$0 = 0.00\% \rightarrow 10000 = 100.00\%$	Read/Write
		Example:	
		A value of 2000 represents a TLS Low	
		Setpoint of 20.00% the full range tension.	

Setting	Range	Read/Write
TLS High Setpoint	$0 = 0.00\% \rightarrow 10000 = 100.00\%$	Read/Write
	Example:	
	A value of 8000 represents a TLS High	
	Setpoint of 80.00% the full range tension.	
Auto Setpoint	$0 = 0.00\% \rightarrow 10000 = 100.00\%$	Read/Write
	Example:	
	A value of 5000 represents an Auto Setpoint of	
Line Graph Update Time	-	Read/Write
	0 = 30 sec	
	1 = 60 sec	
	$2 = 2 \min$	
	$3 = 5 \min$	
	$4 = 10 \min$	
	$5 = 30 \min$	
Trim Percentage Target	$0 \rightarrow 1$, where $0 \rightarrow 1$ represents:	Read/Write
	0 = Output	
	1 = Line Speed	
Acceleration	$0 \rightarrow 1$, where $0 \rightarrow 1$ represents:	Read/Write
Compensation Enable	0 = Off	
	1 = On	
Tension Display	$0 \rightarrow 5$, where $0 \rightarrow 5$ represents:	Read/Write
Damping	$0 = 0.0 \sec$	
	1 = 0.2 sec	
	2 = 0.4 sec	
	3 = 0.8 sec	
	4 = 1.6 sec	
	5 = 3.2 sec	
Line/Roll Filter Time	$0 \rightarrow 4$, where $0 \rightarrow 4$ represents:	Read/Write
	0 = 0.00 sec	
	1 = 0.10 sec	
	2 = 0.25 sec	
	TLS High Setpoint Auto Setpoint Line Graph Update Time Trim Percentage Target Acceleration Compensation Enable Tension Display Damping	TLS High Setpoint $0 = 0.00\% \rightarrow 10000 = 100.00\%$ Example: A value of 8000 represents a TLS High Setpoint of 80.00% the full range tension.Auto Setpoint $0 = 0.00\% \rightarrow 10000 = 100.00\%$ Example: A value of 5000 represents an Auto Setpoint of 50.00% the full range tension.Line Graph Update Time $0 \rightarrow 5$, where $0 \rightarrow 5$ represents: $0 = 30 \sec$ $1 = 60 \sec$ $2 = 2 min$ $3 = 5 min$ $4 = 10 min$ $5 = 30 min$ Trim Percentage Target $0 \rightarrow 1$, where $0 \rightarrow 1$ represents: $0 \Rightarrow 0$, where $0 \rightarrow 1$ represents: $0 = 0.01\mu tilling1 = Line SpeedAcceleration0 \rightarrow 1, where 0 \rightarrow 1 represents:0 = 0.01 \sec1 = 0nTension DisplayDamping0 \rightarrow 5, where 0 \rightarrow 5 represents:0 = 0.0 \sec1 = 0.2 \sec2 = 0.4 \sec3 = 0.8 \sec4 = 1.6 \sec5 = 3.2 \secLine/Roll Filter Time0 \rightarrow 4, where 0 \rightarrow 4 represents:0 = 0.00 \sec1 = 0.10 \sec$

4c. Store Setup Names

The controller is capable of storing up to 30 Setups, including the ACTIVE Setup.

Setups are stored in EEPROM "slots". Slot 1 always holds the ACTIVE Setup. The ACTIVE Setup may be copied and saved into Setup slots 2 to 30. Setups 2 to 30 may have unique names up to 14 characters each. Only the following characters may be used in a name:

_0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ

Saving a Setup name will copy the ACTIVE configuration into the selected slot. For instance, writing a name into locations $524 \rightarrow 531$ will copy the active configuration into configuration 4, and store the name of configuration 4.

Eight 16-bit registers are required to hold a configuration name, although only the first seven registers are valid. The last character of a name must be followed by the hexadecimal character 0x00. Register 8 should be 0x0000. Each register holds two characters, and the maximum name length is 14 characters. Attempting to write a longer name will result in a Write Rules Error (code 63). Configuration names are read using the Read Holding Registers command (03), and are written using the Write Multiple Registers Command (16). The ACTIVE configuration Name is Read Only. The address range of each name is given below:

$4500 \rightarrow 507$ ACTIVE	$4628 \rightarrow 635$ Name 17
$4508 \rightarrow 515$ Name 2	$4636 \rightarrow 643$ Name 18
$4516 \rightarrow 523$ Name 3	$4644 \rightarrow 651$ Name 19
$\bigstar 524 \rightarrow 531$ Name 4	$▲652 \rightarrow 659$ Name 20
$\bigstar 532 \rightarrow 539$ Name 5	$\bigstar 660 \rightarrow 667$ Name 21
$4540 \rightarrow 547$ Name 6	$\bigstar 668 \rightarrow 675$ Name 22
$4548 \rightarrow 555$ Name 7	$\checkmark 676 \rightarrow 683$ Name 23
$4556 \rightarrow 563$ Name 8	$▲684 \rightarrow 691$ Name 24
$▲564 \rightarrow 571$ Name 9	$▲692 \rightarrow 699$ Name 25
$4572 \rightarrow 579$ Name 10	$\checkmark 700 \rightarrow 707$ Name 26
$\bigstar 580 \rightarrow 587$ Name 11	$\checkmark 708 \rightarrow 715$ Name 27
$\bigstar 588 \rightarrow 595$ Name 12	$\checkmark 716 \rightarrow 723$ Name 28
$4596 \rightarrow 603$ Name 13	$\checkmark 724 \rightarrow 731$ Name 29
$4604 \rightarrow 611$ Name 14	$\checkmark 732 \rightarrow 739$ Name 30
$4612 \rightarrow 619$ Name 15	
$4620 \rightarrow 627$ Name 16	

Recall Setup

Recall Setup will copy the Stored Setup into the Active Setup. In order to Recall a Setup, using Write Single Register Command (06), write the Setup Number 2 - 30 into Register 800.

Delete Setup

Only a named setup can be deleted. In order to Delete a Setup, using Write Single Register Command (06), write the Setup Number 2 - 30 into Register 900.

4d. Run Time Data

Run Time Data may be accessed using the Read Input Registers command (04). Run time data is Read Only. The following registers hold run time data:

Register	Setting	Range	Read/Write
0	RTA 2 ADC In	$0 \rightarrow 4095$	Read Only
1	RTA 1 ADC In	$0 \rightarrow 4095$	Read Only
2	Remote Auto Setpoint	0 → 4095	Read Only
	ADC In		
Register	Setting	Range	Read/Write
3	Remote Manual Setpoint	0 → 4095	Read Only
	ADC In		
4	Line Speed ADC In	0 → 4095	Read Only
5	Roll ADC In	0 → 4095	Read Only
6	Diameter ADC In	0 → 4095	Read Only
7	+10 / 15 V Rail ADC In	0 → 4095	Read Only
8	RTA 1 Signal	$0 = 0.00V \rightarrow 10000 = 10.00V$	Read Only
9	RTA 2 Signal	$0 = 0.00V \rightarrow 10000 = 10.00V$	Read Only
10	Line Speed Signal	$0 = 0.00V \rightarrow 10000 = 10.00V$	Read Only
11	Auto Signal Percent	$0 = 0.00V \rightarrow 10000 = 10.00V$	Read Only
12	Manual Signal	$0 = 0.00V \rightarrow 10000 = 10.00V$	Read Only
13	+10 / 15 V Sense	$0 = 0.00V \rightarrow 10000 = 10.00V$	Read Only
14	Diameter	$0 = 0.00\% \rightarrow 10000 = 100.00\%$	Read Only
15	Acceleration	$0 = 0.00\% \rightarrow 10000 = 100.00\%$	Read Only
16	Excitation Voltage ADC	0 - 1024	Read Only
	In		
17	Excitation Current A ADC In	0 - 1024	Read Only
18	Excitation Current B ADC In	0 - 1024	Read Only
19	E-STOP Input	$0 \rightarrow 1$, where $0 \rightarrow 1$ represents:	Read Only
	I I I	0 = Inactive	5
		1 = Active	
20	Tangian Off Immut		Deed Only
20	Tension Off Input	$0 \rightarrow 1$, where $0 \rightarrow 1$ represents:	Read Only
		0 = Inactive	
		1 = Active	
21	Tension On Input	$0 \rightarrow 1$, where $0 \rightarrow 1$ represents:	Read Only
		0 = Inactive	
		1 = Active	
22	Auto Input	$0 \rightarrow 1$, where $0 \rightarrow 1$ represents:	Read Only
	•	0 = Inactive	,
		1 = Active	

Register	Setting	Range	Read/Write
3 Manual Input		$0 \rightarrow 1$, where $0 \rightarrow 1$ represents:	Read Only
		0 = Inactive	
		1 = Active	
24	Ratio Input	$0 \rightarrow 1$, where $0 \rightarrow 1$ represents:	Read Only
		0 = Inactive	
		1 = Active	
25	Hold Input	$0 \rightarrow 1$, where $0 \rightarrow 1$ represents:	Read Only
		0 = Inactive	
		1 = Active	
26	Soft Start Input	$0 \rightarrow 1$, where $0 \rightarrow 1$ represents:	Read Only
		0 = Inactive	
		1 = Active	
27	Spare Input	$0 \rightarrow 1$, where $0 \rightarrow 1$ represents:	Read Only
		0 = Inactive	
		1 = Active	
32	Output	$0 = 0.00\% \rightarrow 10000 = 100.00\%$	Read Only
		Example:	
		A value of 5000 represents an output of 50%.	
33	Output Sign	$0 \rightarrow 1$, where $0 \rightarrow 1$ represents:	Read Only
	o urput orgin	0 = Positive $1 = Negative$	iteau omy
34	Tension ADC In	$0 \rightarrow 65535$	Read Only
35	Transducer Tension	$0 = 0.00\% \rightarrow 10000 = 100.00\%$	Read Only
	Percent	A value of 1500 represents a 15.00% tension	
		input if the Tension $\text{Sign} = 0$. If the Tension	
		Sign = 1, then 1500 represents -15.00%	
36	Tension Sign	$0 \rightarrow 1$, where $0 \rightarrow 1$ represents:	Read Only
		0 = Positive	
		1 = Negative	
48	Tension On / Off	$0 \rightarrow 1$, where $0 \rightarrow 1$ represents:	Read Only
		0 = Off	
		1 = On	
49	Auto / Manual	$0 \rightarrow 1$, where $0 \rightarrow 1$ represents:	Read Only
		0 = Manual	
		1 = Auto	
50	Ratio State	$0 \rightarrow 1$, where $0 \rightarrow 1$ represents:	Read Only
		0 = Inactive	2
		1 = Active	
51	Soft Start State	$0 \rightarrow 1$, where $0 \rightarrow 1$ represents:	Read Only
		0 = Inactive	
		1 = Active	
52	Hold State	$0 \rightarrow 1$, where $0 \rightarrow 1$ represents:	Read Only
		0 = Inactive	
		1 = Active	
		I – ACUVE	

Register	Setting	Range	Read/Write
53	TLS Low State	$0 \rightarrow 1$, where $0 \rightarrow 1$ represents:	Read Only
		$0 = \mathrm{Off}$	
		1 = On	
54	TLS High State	$0 \rightarrow 1$, where $0 \rightarrow$	Read Only
		$0 = \mathrm{Off}$	
		1 = On	
55	Lockout I/O Pin	$0 \rightarrow 1$, where $0 \rightarrow$	Read Only
		0 = Active	
		1 = Inactive	
62	Excitation Error	$0 \rightarrow 12$, where $0 \rightarrow 12$ represents:	Read Only
		0 = No excitation error	
		10 = Excitation short or low impedance	
		11 = Excitation Open	
		12 = Unknown transducer	
63	Tension Error	$0 \rightarrow 22$, where $0 \rightarrow 22$ represents:	Read Only
		0 = No Error	
		20 = Tension ADC Comm Error	
		21 = Signals ADC Error	
		22 = Internal ADC Error	
65	Reset TLS Button State	$0 \rightarrow 1$, where $0 \rightarrow 1$ represents:	Read Only
		0 = Off $1 = On$	

4e. Standard Data

Command (04) may also be used to read a packet of 16 registers of data starting with register 256. This is a special case that may reduce the number of commands required to obtain standard data. The data is packed as follows:

If Tension Source = Transducer Register 0 = Transducer Tension Percent Register 1 = Tension Sign

If Tension Source = RTA1 Register 0 = RTA1 Signal Percent Register 1 = 0

If Tension Source = RTA2 Register 0 = RTA2 Signal Percent Register 1 = 0 Register 2 = Output Percent Register 3 = Output Sign Register 4 = Line Speed Signal Percent Register 5 = Diameter Percent

4e. Standard Data continued...

Register 6 = Auto Setpoint Percentage

Register 7 = Manual Setpoint Percent

Register 8 = Status Alarm Bits with the following additional bits:

Bit 10 = Taper Enable Bit 11 = Excitation Error

Bit 12 = Transducer ADC Error Bit 13 = Cal Not Complete (If using transducer)

Register 9 = Tension Units

Register 10 = Max Line Speed

Register 11 = Line Speed Units

Register 12 = Max Full Roll Diameter

Register 13 =Core Diameter

Register 14 =Diameter Units

Register 15 = Tension Range

4f. Remote Push Buttons

Remote Push Buttons are Write Only. Remote push buttons may be activated using the Write Single Coil command (05). The following buttons may be remotely controlled:

Register	Setting	Range	Read/Write
0	Toggle Tension	$0 \rightarrow 1$	Write Only
1	Toggle Auto Manual	$0 \rightarrow 1$	Write Only
2	Decrement Auto Setpoint	$0 \rightarrow 1$	Write Only
	1%		
3	Increment Auto Setpoint	$0 \rightarrow 1$	Write Only
	1%		
4	Decrement Manual	$0 \rightarrow 1$	Write Only
	Setpoint 1%		
Register	Setting	Range	Read/Write
5	Increment Manual	$0 \rightarrow 1$	Write Only
	Setpoint 1%		
6	Decrement Auto Setpoint	$0 \rightarrow 1$	Write Only
	10%		
7	Increment Auto Setpoint	$0 \rightarrow 1$	Write Only
	10%		
8	Decrement Manual	$0 \rightarrow 1$	Write Only
	Setpoint 10%		
9	Increment Manual	$0 \rightarrow 1$	Write Only
	Setpoint 10%		
10	Tension On / Off	$0 \rightarrow 1$	Write Only
		0 = Tension Off	
		1 = Tension On	
11	Auto / Manual	$0 \rightarrow 1$	Write Only
		0 = Manual	
		1 = Auto	

4g. Modbus RTU Command Format

(03) Read Holding Registers

The Read Holding Registers command is used to:

Read configuration parameters

Read configuration names

Read configuration independent parameters

The Request, Response, and Error codes are described below:

Request

Function Code	1 Byte	0x03
Starting Address	2 Bytes	$0x0000 \rightarrow 0xFFFF$
Quantity of Registers	2 Bytes	$1 \rightarrow 16$

	Response		
Function Code	1 Byte	0x03	
Byte Code	1 Byte	2 x N	
Input Registers	N x 2 Bytes		

Error

Error Code	1 Byte	0x83
Exception Code	1 Byte	

For example, if the Slave Address is 25, the following command can be used to read the Core Diameter:

Hex

19, 03, 00, 0B, 00, 01, F6, 10

If the core diameter is 6.0, then the following reply should be returned:

Hex

19, 03, 02, 00, 3C, 98, 57

(04) Read Input Registers

The Read Input Registers command is used to:

Read Run Time Variables

The Request, Response, and Error codes are described below:

RequestFunction Code1 Byte0x04Starting Address2 Bytes $0x0000 \rightarrow 0xFFFF$ Quantity of Registers2 Bytes $1 \rightarrow 16$

(04) Read Input Registers continued...

	Response		
Function Code	1 Byte	0x04	
Byte Code	1 Byte	2 x N	
Input Registers	N x 2 Bytes		

Error

Error Code		
Exception Code	1 Byte	

For example, if the Slave Address is 25, the following command can be used to read the Diameter Percent:

Hex

19, 04, 00, 0E, 00, 01, 53, D1

If the Diameter is 0%, then the following reply should be returned:

Hex

19, 04, 02, 00, 00, 90, 32

(05) Write Single Coil

The Write Single Coil command is used to:

Press remote push buttons

The Request, Response, and Error codes are described in the following table:

	Reques	t
Function Code	1 Byte	0x05
Output Address	2 Bytes	$0x0000 \rightarrow 0xFFFF$
Output Value	2 Bytes	0x0000 or 0xFF00
	Respons	e
Function Code	1 Byte	0x05
Output Address	2 Bytes	$0x0000 \rightarrow 0xFFFF$
Output Value	2 Bytes	0x0000 or 0xFF00
	Error	
Error Code	1 Byte	0x85
Exception Code	1 Byte	

For example, if the Slave Address is 25, the following command can be used to turn the Tension On:

Hex

19, 05, 00, 0A, FF, 00, AF, E0

The following reply will be returned: Hex **19, 05, 00, 0A, FF, 00, AF, E0**

(06) Write Single Register

Write Single Register is used to:

Write a configuration parameter Write a configuration independent parameter Recall a configuration Delete a configuration

An exception code is returned if it is not possible to change the parameter. This will occur if a grayout rule is in effect, or a register value is out of range.

The Request, Response, and Error codes are described below. The normal response is an echo of the request:

Request		
Function Code	1 Byte	0x06
Register Address	2 Bytes	$0x0000 \rightarrow 0xFFFF$
Register Value	2 Bytes	$0x0000 \rightarrow 0xFFFF$

Response		
Function Code	1 Byte	0x06
Register Address	2 Bytes	$0x0000 \rightarrow 0xFFFF$
Register Value	2 Bytes	$0x0000 \rightarrow 0xFFFF$

Error		
Error Code	1 Byte	0x86
Exception Code	1 Byte	

For example, if the Slave Address is 25, the following command can be used to set the Core Diameter to 3.5:

Hex 19, 06, 00, 0B, 00, 23, BA, 09

The following reply should be returned:

Hex 19, 06, 00, 0B, 00, 23, BA, 09

(16) Write Multiple Registers

Write Multiple Registers is used to:

Write a configuration name (requires writing to 8 registers). Writing a configuration name will copy the Active configuration into the newly named configuration.

An exception code is returned if it is not possible to change the parameter. This will occur if a grayout rule is in effect, or a register value is out of range.

The Request, Response, and Error codes are described below. The normal response is an echo of the request:

	Request	
Function Code	1 Byte	0x10
Starting Address	2 Bytes	$0x0000 \rightarrow 0xFFFF$
Quantity of Registers	2 Bytes	1 to 8
Byte Count	1 Byte	2 x N
Register Value	N x 2 Bytes	value
	Response	
Function Code	1 Byte	0x10
Starting Address	2 Bytes	$0x0000 \rightarrow 0xFFFF$
Quantity of Registers	2 Bytes	1 to 8
	Error	
Error Code	1 Byte	0x90

For example, if the Slave Address is 1, the following command can be used to store the Active Setup to slot 3 and name it "NW". The hex code for "N" is 0x4E, and the hex code for "W" is 0x57. The register value byte order is reversed.

Hex

The following reply should be returned:

Hex

01, 10, 02, 04, 00, 08, 81, B6

Exception Codes

Exception Codes 0x01 to 0x0B are Modbus exception codes and are listed below:

- 0x01 ILLEGAL FUNCTION
- 0x02 ILLEGAL DATA ADDRESS
- 0x03 ILLEGAL DATA VALUE
- 0x04 SLAVE DEVICE FAILURE
- 0x05 ACNOWLEDGE
- 0x06 SLAVE DEVICE BUSY
- 0x08 MEMORY PARITY ERROR
- 0x0A GATEWAY PATH UNAVAILABLE
- 0x0B GATEWAY TARGET DEVICE FAILED TO RESPOND

The following exception codes are unique to the SteadyWeb5:

- 60 Eeprom comm error
- 61 Corrupted data error
- 62 Bounds error
- 63 Write rules error.
- 80 Eeprom timeout
- 81 Front board timeout
- 82 Comm timeout

CRC Error

As documented in the Modbus Application Protocol Specification, no response is returned if a CRC error is detected.

(00) Broadcast Message

In Modbus RTU broadcast is achieved using 0 as the slave address. A broadcast message cannot expect a reply message. It is used to broadcast a command to all devices on the network by using slave address (0). Function codes (05) and (06) can be broadcast. For instance, function code (05) can be used to turn off tension to every SW5 on the RS485 network.

Because there is no reply to a broadcast message, there is no error response, and no guarantee that the message was successfully received and implemented.

Reference:

Modbus software was tested using Modbus Test Procedure from Rogue Engineering Inc. http://www.rogue-engr.com.